Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.

نویسندگان

  • Christine E Henry
  • Ying-Ying Wang
  • Qi Yang
  • Thuy Hoang
  • Sumon Chattopadhyay
  • Timothy Hoen
  • Laura M Ensign
  • Kenetta L Nunn
  • Holly Schroeder
  • Justin McCallen
  • Thomas Moench
  • Richard Cone
  • Steve R Roffler
  • Samuel K Lai
چکیده

UNLABELLED Antibodies that specifically bind polyethylene glycol (PEG) can lead to rapid elimination of PEGylated therapeutics from the systemic circulation. We have recently shown that virus-binding IgG can immobilize viruses in mucus via multiple low-affinity crosslinks between IgG and mucins. However, it remains unclear whether anti-PEG antibodies in mucus may also alter the penetration and consequently biodistribution of PEGylated nanoparticles delivered to mucosal surfaces. We found that both anti-PEG IgG and IgM can readily bind nanoparticles that were densely coated with PEG polymer to minimize adhesive interactions with mucus constituents. Addition of anti-PEG IgG and IgM into mouse cervicovaginal mucus resulted in extensive trapping of mucus-penetrating PEGylated nanoparticles, with the fraction of mobile particles reduced from over 95% to only 34% and 7% with anti-PEG IgG and IgM, respectively. Surprisingly, we did not observe significant agglutination induced by either antibody, suggesting that particle immobilization is caused by adhesive crosslinks between mucin fibers and IgG or IgM bound to individual nanoparticles. Importantly, addition of corresponding control antibodies did not slow the PEGylated nanoparticles, confirming anti-PEG antibodies specifically bound to and trapped the PEGylated nanoparticles. Finally, we showed that trapped PEGylated nanoparticles remained largely in the luminal mucus layer of the mouse vagina even when delivered in hypotonic formulations that caused untrapped particles to be drawn by the flow of water (advection) through mucus all the way to the epithelial surface. These results underscore the potential importance of elucidating mucosal anti-PEG immune responses for PEGylated therapeutics and biomaterials applied to mucosal surfaces. STATEMENT OF SIGNIFICANCE PEG, generally considered a 'stealth' polymer, is broadly used to improve the circulation times and therapeutic efficacy of nanomedicines. Nevertheless, there is increasing scientific evidence that demonstrates both animals and humans can generate PEG-specific antibodies. Here, we show that anti-PEG IgG and IgM can specifically immobilize otherwise freely diffusing PEG-coated nanoparticles in fresh vaginal mucus gel ex vivo by crosslinking nanoparticles to the mucin mesh, and consequently prevent PEG-coated nanoparticles from accessing the vaginal epithelium in vivo. Given the increasing use of PEG coatings to enhance nanoparticle penetration of mucosal barriers, our findings demonstrate that anti-PEG immunity may be a potential concern not only for systemic drug delivery but also for mucosal drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using anti-poly(ethylene glycol) bioparticles for the quantitation of PEGylated nanoparticles

Attachment of polyethylene glycol (PEG) molecules to nanoparticles (PEGylation) is a widely-used method to improve the stability, biocompatibility and half-life of nanomedicines. However, the evaluation of the PEGylated nanomedicine pharmacokinetics (PK) requires the decomposition of particles and purification of lead compounds before analysis by high performance liquid chromatography (HPLC), m...

متن کامل

Selective Delivery of PEGylated Compounds to Tumor Cells by Anti-PEG Hybrid Antibodies.

Polyethylene glycol (PEG) is attached to many peptides, proteins, liposomes, and nanoparticles to reduce their immunogenicity and improve their pharmacokinetic and therapeutic properties. Here, we describe hybrid antibodies that can selectively deliver PEGylated medicines, imaging agents, or nanomedicines to target cells. Human IgG1 hybrid antibodies αPEG:αHER2 and αPEG:αCD19 were shown by ELIS...

متن کامل

Targeted detection of the cancer cells using the anti-CD24 bio modified PEGylated gold nanoparticles: the application of CD24 as a vital cancer biomarker

Objective(s): The central role of molecular imaging modalities in cancer management is an undeniable fact that could help to diagnose cancer tumors in early stages. The main aim of this study is to prepare a novel targeted molecular imaging nanoprobe of CD24-PEGylated Au NPs to improve the ability of Computed tomography scanning (CT scan) outputs for both in vitro and in vivo detection of breas...

متن کامل

Anti-polyethyleneglycol antibody response to PEGylated substances.

In contrast to the general assumption that polyethyleneglycol (PEG)-conjugated substances lack immunogenicity and antigenic, it has been reported that they can elicit antibodies against PEG (mainly anti-PEG immunoglobulin M (IgM)). In patients, the presence of anti-PEG antibodies may limit therapeutic efficacy of PEGylated substances as a consequence of inducing rapid clearance of and neutraliz...

متن کامل

Pharmacokinetics and Biodistribution of Pegylated Methotrexate after IV Administration to Mice

The efficacy of methotrexate (MTX) as an antimetabolite chemotherapeutic agent highly depends on its blood circulation half-life. In our previous study, different conjugates of MTX (MTX-PEG) were synthesized, their physicochemical properties were investigated and MTX-PEG5000 was finally selected as optimum drug-conjugate for further investigations. In the current work, first the stability of MT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2016